عمده ی پیشرفتی که از قرن 17 میلادی در ریاضیات صورت گرفت ، در حساب دیفرانسیل و انتگرال بود که به خواص عدد حقیقی و تابعهای از این مجموعه بود. مطالعهی این مجموعههای ناشمارا منجر به بوجود آمدن مفاهیم پیوستگی و مشتق گردید و به این دلیل این ریاضیات را ریاضیات پیوسته میخوانند. اما در مقابل این گونه ریاضیات مفاهیم دیگری در ریاضیات وجود دارند که روی مجموعههای متناهی و شمارا قابل تعریفاند.به مجموعهی این مفاهیم ریاضی ، ریاضیات گسسته گویند. ریاضیات گسسته در سالهای اخیر و بدلیل پیشرفت دانش کامپیوتر بیشترین رشد خود را در تاریخ ریاضیات داشته است.
نظریه گراف
نظریه گراف شاخه ای از ریاضیات است که درباره اشیاء خاصی در ریاضی به نام گراف بحث میکند. به صورت شهودی گراف نمودار یا دیاگرامی است شامل تعدادی رأس که با یالهایی به هم وصل شدهاند. تعریف دقیقتر گراف به این صورت است که گراف مجموعهای از رأسها است که توسط خانوادهای از زوجهای مرتب که همان یالها هستند به هم مربوط شدهاند. یالها بر دو نوع ساده و جهت دار هستند که هر کدام در جای خود کاربردهای بسیاری دارد. مثلا اگر صرفا اتصال دو نقطه -مانند اتصال تهران و زنجان با کمک آژادراه- مد نظر شما باشد کافیست آن دو شهر را با دو نقطه نمایش داده و اتوبان مزبور را با یالی ساده نمایش دهید. اما اگر بین دو شهر جاده ای یکطرفه وجود داشته باشد آنگاه لازمست تا شما با قرار دادن یالی جهت دار مسیر حرکت را در آن جاده مشخص کنید. آغاز نظریهٔ گراف به سدهٔ هجدهم بر میگردد. اویلر ریاضیدان بزرگ مفهوم گراف را برای حل مسئله پلهای کونیگسبرگ ابداع کرد اما رشد و پویایی این نظریه عمدتاً مربوط به نیم سدهٔ اخیر و با رشد علم دادهورزی (انفورماتیک) بوده است. مهمترین کاربرد گراف مدلسازی پدیدههای گوناگون و بررسی بر روی آنهاست. با گراف میتوان به راحتی یک نقشه بسیار بزرگ یا شبکهای عظیم را در درون یک ماتریس به نام ماتریس وقوع گراف ذخیره کرد و یا الگوریتمهای مناسب مانند الگوریتم دایسترا یا الگوریتم کروسکال و … را بر روی آن اعمال نمود. یکی از قسمتهای پركاربرد نظریهٔ گراف، گرافهای مسطح یا هامنی است که به بررسی گرافهایی میپردازد كه میتوان آنها را به نحوی روی صفحه كشید كه یالها جز در محل راس ها یكدیگر را قطع نكنند. این نوع گراف در ساخت جاده ها و حل مساله کلاسیک و قدیمی سه خانه و سه چاه آب به کار می رود. نظریه گراف یکی از پر کاربردترین نظریه ها در شاخه های مختلف علوم مهندسی (مانند عمران)، باستانشناسی(کشف محدوده یک تمدن) و … است.
نظریهٔ مجموعهها
شالودهٔ بنیادین و سنگ اساسی بنای ریاضیات جدید است. تعریفهای دقیق جمیع مفاهیم ریاضی، مبتنی بر نظریه مجموعههاست. گذشته از این روشهای استنتاج ریاضی، با استفاده از ترکیبی از استدلالهای منطقی و مجموعه- نظری تنظیم شدهاند. زبان نظریه مجموعهها، زبان مشترکی است که ریاضیدانان منطقی در سراسر دنیا با آن صحبت کرده و آن را درک میکنند. چنان که اگر کسی بخواهد پیشرفتی در ریاضیات عالی یا کاربردهای عملی آن داشته باشد، باید مفاهیم اساسی و نتایج نظریه مجموعهها و زبانی که در آن بیان شدهاند، آشنا شود.
تاریخچه
نظریه مجموعهها در اواخر قرن نوزدهم به طور عمده توسط جرج کانتور بنیان گذاشته شد. زمانی که کانتور مفاهیم و استدلالهای جدید و متهورانه خود را منتشر کرد، اهمیت آنها تنها توسط تعداد کمی از ریاضیدانان بزرگ درک شد. اما این نظریه در توسعه بعدیاش، تقریباً در تمام شاخههای ریاضیات نفوذ کرد و تأثیری عمیق بر گسترش آنها داشت. بطوری که حتی باعث تغییر نظریههای تثبیت شده گردید و ریاضیدانان سعی کردند مفاهیم ریاضی را بر اساس نظریه مجموعهها تعریف کنند. به عنوان مثال میتوان از تعریف اعداد طبیعی توسط پئانو اشاره کرد. همچنین توسعه بعضی از نظامهای ریاضی، از قبیل توپولوژی، اساساً به ابزار نظریه مجموعهها وابسته است. از اینها مهمتر، نظریه مجموعهها نیرویی متحد کننده بدست داد که به تمام شاخههای ریاضیات مبنای مشترک و مفاهیم آنها، وضوح و دقتی تازه بخشیده است.
هنگامی که میخواهیم با مجموعهای آشنا شویم میتوانیم آنها را به سه صورت مورد بررسی قرار دهیم. مطالعه مجموعهها به طور کلی نياز به آشنایی عمومی با آنها دارد که هر کس که میخواهد علوم پایه را مورد مطالعه قرار دهد باید این آشنایی را کسب کند، مطالعه مجموعهها به طور طبیعی و مطالعه مجموعهها به صورت اصل موضوعی. در نظریه مجموعهها دو واژه طبیعی و اصل موضوعی دو واژه متضاد هم میباشند.
نظریه طبیعی مجموعهها
مطالعه مجموعهها به صورتی طبیعی به عنوان نظریه طبیعی مجموعهها یا Naive set theory است و این همان نظریهای است که در آغاز پیدایش نظریه مجموعهها توسط جرج کانتور مطرح گردید. اما در ادامه این نظریه درگیر اشکالات و پارادکسهایی همچون پارادکس راسل شد، و به این ترتیب نیاز به یک تغییر در نظریه مجموعه ها احساس شد و به این ترتیب ریاضیدانانی چون ارنست زرملو سعی کردند نظریه مجموعهها را در قالب یک دستگاه اصل موضوعی ارایه کنند که منجر به ایجاد نظریه اصل موضوعی مجموعهها انجامید.
نظریهٔ اصل موضوعی مجموعهها
در نظریه اصل موضوعی مجموعهها، مجموعه به عنوان یک مفهوم اولیه و تعریف نشده در نظر گرفته شده و با چند اصل موضوع به بررسی خواص مجموعهها پرداخته میشود. هدف این نظریه جلوگیری از پارادکسهای نظریه مجموعهها است.
منابع:
1-http://daneshnameh.roshd.ir
2- http://math-yu.mihanblog.com
3- http://fa.wikipedia.org
Hits: 0